
The Hitchhiker’s Guide to the Optimal Route
Planning

Oleksii Vedernikov, Lars Kulik and Kotagiri Ramamohanarao
Department of Computing and Information Systems

The University of Melbourne, Australia
Email: {vedernikovo, lkulik, kotagiri }@unimelb.edu.au

Abstract—Hitchhiking is the oldest ridesharing process without
prior arrangements by the ride sharers. It usually involves
uncertain waiting times and various combinations of lifts on
roads. For this way of travelling, the problem of finding an
optimal route is extremely important and has not been studied.
We propose the concept of a hitchhiking graph to represent
all possible decisions that a hitchhiker can consider on a road
network. We develop an efficient pruning technique for a faster
computation of the optimal route with the least expected journey
time. The effectiveness of our methods is evaluated on road
networks of selected countries.

I. INTRODUCTION

Hitchhiking is the first well-known form of ridesharing which
is an act of soliciting and getting rides without prior arrange-
ment. The decision-making process for a hitchhiker involves a
number of steps: choosing a pick-up location to thumb a lift,
and after a driver stops and informs their route, deciding if
they get in and where to get out, and repeat this process until
they reach their destination. Assume that a hitchhiker has an
initial and destination locations and a starting time, and they
need to choose a path and lifts to reach the destination with
minimum travel time. We define it as a hitchhiker’s problem.

At first, a hitchhiker’s problem resembles a straightforward
shortest path problem, but closer inspection reveals there are
many options for a hitchhiker: various combinations of lifts
along a path, different quality of pick-up locations which
affects waiting time, various paths that might be taken between
a pair of locations. For example, for a path between two points,
a hitchhiker could wait for a direct ride, try to take two lifts
with a stop and seek for another ride, etc. The total number
of such combinations of rides on a single path is 2n−2, where
n is a number of possible stop points. We also show that for
each of these combinations, computing exact travel time is
also exponential to the number of lifts.

A number of works on finding a shortest path for vehicles on
road networks and optimal route planning in public transport
systems has been studied [2]. However, they are conceptually
different to our problem: a hitchhiker cannot choose a path,
only lifts that follow certain paths, and faces an unknown
number of lifts with unknown waiting times. Unlike public
transport, waiting time for a hitchhiker does not follow a
timetable, and is different for various points on the same road
depending on how easy it is for a driver to stop. In addition,
transport routes are fixed and their number is limited, while
the number of hitchhiking routes is dependent on drivers’

routes. Therefore, our problem is different from optimal route
planning in road and transportation networks.

To the best of our knowledge, the idea of efficient route
planning for hitchhikers that minimizes journey time has never
been studied. We aim to find a robust algorithm to find an
optimal route for hitchhikers, which might be used in a mobile
hitchhiking recommender system. The main research question
of this work is: given a road network and a start and destination
points, how to efficiently find a route and a combination of
lifts on it with the least expected travel time?

To answer this question, we first outline the whole hitch-
hiking process and describe the exponential complexity of the
whole problem. Then, we introduce the concept of hitchhiking
graph, which contains new data in addition to a road network,
i.e. quality of pick-up locations, estimated traffic on roads, and
constitutes a complete set of all possible rides - hitchhikking
edges. We show that their number is cubic to the number of
nodes in the worst-case.

Then, we develop a pruning technique to refine a set of
hitchhiking edges, leaving paths leading to largest cities in
the area and with adequate travel time within a spatial ellipse.

In summary, our key contributions of this paper are:

• We formalise the hitchhiker’s problem and combine all
properties of hitchhiking trips, including uncertain param-
eters: waiting time at pick-up locations, chance of being
collected and number of lifts in a trip.

• We aim to integrate the most essential properties of
a hitchhiker’s problem into a proposed concept of a
hitchhiking graph, which represents all possible decisions
that can be made by a hitchhiker.

• We developed an efficient edge pruning technique to
reduce the computational time via deleting the edges
which are less likely to be used. The performance of
our methods are studied on road networks of selected
countries utilizing a wide range of parameters.

The remainder of the paper is organized as follows. Section
II provides a review of existing research about hitchhiking
and shortest path problems. Section III describes hitchhiker’s
problem and heuristics for its solution. Section IV has a
summary of experiments on real road networks. Lastly, Section
V describes future work for the given problem.

II. LITERATURE REVIEW

A. Hitchhiking
Hitchhiking became popular in 1960s and attracted scientific
interest from sociological community. There are several arti-
cles on investigating how different factors as gender, dressing,
weather may affect likeliness of drivers to stop which are
summarized by Kotz [11]. A recent paper by Vedernikov et
al. [12] proposes a system that predicts a quality and waiting
time at a pick-up location. However, the question of finding
the optimal route for hitchhikers has not been studied yet.

B. Shortest path in road networks
Bast et al. [2] provides an excellent survey on current state-
of-the-art approaches for route planning for road networks
and public transport networks and do comparisons of these
methods on various road networks. Historically Dijkstra’s
shortest path algorithm algorithm [7] is widely used, and
current state-of-art methods include using of Hub Labels (HL)
for fast lookup of distances from any node to nodes from a
predefined set of hubs [6] or Transit Node Routing (TNR)
which uses distance tables on a subset of the vertices [4].
Even though some methods may be applicable for hitchhiker’s
problem, shortest path routing on road networks is different
due to the opportunity of choosing a road for a driver, which
is not applicable for the hitchhiker’s problem.

C. Optimal route in public transportation networks
Bast et al. [1] propose an idea of Transfer Patterns (TP):
sequences of stations where change of vehicle occurs. TP are
utilised together with direct connections without change of
vehicle, and this method is used for public transport routing
in Google Maps. Also, a new approach by Bast and Storandt
[3] utilizes the use of expected frequency of transport instead
of schedules. However, route planning in public transport
networks is using predefined set of public transport routes,
while a hitchhiker is operating on a much larger set of cars
source-destination pairs. In additions, there are no predefined
stops for hitchhiking, and waiting time on pick-up locations
even in a few tens of meters may vary significantly due to
difficulty of drivers to stop at those locations.

III. PROBLEM DESCRIPTION

A. Hitchhiking overview
First, we describe the typical process of hitchhiking. A hitch-
hiker starts their journey at an initial location and time and they
want to get to a destination using lifts from random drivers
on a road network. Next, the hitchhiker needs to decide which
road they want to take and choose a first pick-up location
to thumb for a ride. After a car stops, the hitchhiker asks a
driver’s route, and after that decides whether to accept the ride
or wait for another car to stop. If the hitchhiker accepts the
ride offer, they get in the car and continue their journey on the
driver’s original path. Since the driver will usually not change
their route, but is able to stop at any point of their route, the
hitchhiker has to decide where to get off as well. Usually their
destinations are different, so the hitchhiker might need a few
lifts to reach the final destination.

Next, we list fundamental components of hitchhiking:
1) Road network of a certain area;
2) Initial locations and destinations of hitchhikers;
3) Spatio-temporal trajectories of drivers’ trips;
4) Willingness to offer and accept rides for pairs of drivers

and hitchhikers;
5) Quality of all possible pick-up locations.
We postulate that the whole process of hitchhiking can be

described using these principles. Since our goal is to develop
foundations of a hitchhiking recommender system, knowing
the complete information about all 5 components will lead
to the precise solution. In the following subsections we will
show the complex nature of the problem and make certain
assumptions and restrictions.
B. Lift combinations on a path
Suppose there is a path between two nodes which has n nodes.
The hitchhiker can wait for a direct lift to the destination or
accept offers to intermediate nodes and ask for another lift
from those. Since a hitchhiker may get off at any node, the
total number of combinations of lifts is equal to the number of
permutations with repetitions 2n−2. For example, consider a
road network segment in Figure 1 and the corresponding tree
of all combinations of lifts in Figure 2:

Fig. 1: Example of a road network

Fig. 2: Lift combinations

Source A and destination D correspond to the root and
leaves respectively. Arrows from each node represent the direct
rides, and number of paths from root A to leaves E is equal
to the number of combination of lifts for a hitchhiker, which
is 2(4−2)) = 4. Note that the tree has no loops, because at any
situation, the total travel time of coming back and stopping
at a certain location for the second time can not decrease the
total travel time. Even if some of the combinations have the
same intermediate stop point, the hitchhiker arrives there at
different times, thus a following strategy is different.
C. Time computation for a hitchhiking trip
Next, we describe travel time for hitchhiking trip on a certain
path. Assume for any connected cities i, j on a road network,
a hitchhiker plans to hitchhike from i to j by a single ride.
Thus, they need to start thumbing at point i and wait for a

driver going to j to stop at i. After waiting, the hitchhiker and
driver will ride in the same car to j. Thus, total travel time for
a hitchhiker consists of waiting time and riding time. Denote
wij(t) as waiting time at node i for a lift to j at time t and
riding time rij(t) between nodes i and j at time t. Suppose
both wij(t) and rij(t) are discrete random variables with prob-
ability mass functions (PMF) fwij

(x, t) = Pr[wij(t) = x] and
frij (x, t) = Pr[rij(t) = x] respectively, which are estimated
empirically. For example, waiting time at node i for a lift to
j for 10 hitchhikers at noon was following: 5 min. for 3, 10
min. for 5, and 15 min. for 2, then PMF wij(5, 12pm) =
0.3, wij(10, 12pm) = 0.5, wij(15, 12pm) = 0.2.

The general problem is to find a probability mass function
(PMF) of hitchhiking travel time from vstart to vend starting
at time t, which is denoted as fvstart→vend

(x, t) and includes
all waiting times ti and riding times τi. This PMF allows to
answer all questions about a route: how long it will take on
average, what is the probability of reaching the destination in
certain time etc. We show if the total number of possible lifts
is unknown, the problem of finding the total travel time in a
general time-dependent hitchhiking setting becomes complex.

Consider an example with one road with two nodes and
a hitchhiker is going from A to B. Assume that all drivers
start and finish their trips only at graph nodes. Despite a
hitchhiker starts their journey at time t, their ride starts not
straight away, but after some waiting time at moment t + t1.
Surely, long waiting time may affect following travel time and
traffic conditions may be different at that time. PMF of total
travel time in this case is

fA→B(x, t) =
∑

t1+τ1=x

Pr(wAB(t) = t1; rAB(t+ t1) = τ1)

=

y1∑
t1=0

υ1∑
τ1=0

0≤y1<x
0<υ1≤x
y1+υ1=x

Pr(wAB(t) = t1; rAB(t+ t1) = τ1)

Each added intermediate points on a single path will add two
more summations. For this example, if all random variables
of waiting and riding time have no more than m values
each, the total number of computations is O(m4), or in a
more general case with k lifts it will be O(m2k) assuming
each lift accounts for both waiting and riding time. Therefore,
estimating full PMF even for a small graph is intractable, and
some constraints have to be relaxed.

In summary, we aim to find not only a path, i.e. roads that
a hitchhiker needs to take, but also which lifts they should
take. Because the hitchhiker can not choose the whole path,
they may choose only a starting point at any of the roads
adjacent to their initial location and a point of the driver’s
route where they may get off if they accept the offer. As we
have shown, computation of travel time for a hitchhiker at
a given combination of lifts is exponential to the number of
stops on it, and the total number of different combination of
lifts at a single hitchhiking path is exponential. Combining

them, the worst-case complexity of calculating total PMF on
a given path will be O(2N

k

). Considering the fact that there
are multiple paths on a road network between two given nodes,
our problem becomes intractable.

D. Constraints and simplifications

First, we analyse fundamental components hitchhiking out-
lined in Section III-A. Representation of Components 1 and
2 is straightforward regarding our research question. Road
network should be represented as a directed graph, and we will
consider a hitchhiker’s problem for one hitchhiker with single
initial location and single destination. Regarding Component
3, since the information about all rides is not available, in this
paper we will use traffic estimation based on previous research
in this area [10]. Our assumption is that drivers and hitchhikers
start and finish their journeys and stop only at nodes of a given
road network, and hitchhikers may ask drivers to drop them
off at any node of original driver’s path.

Component 4 is widely researched in sociology papers as
outlined in Section II, while we assume that willingness of
drivers to stop is independent from a hitchhiker and uniform
among all drivers. Therefore, success of a hitchhiker depends
only on pick-up location (Component 5). We assume that every
pick-up location has its own relative quality score which is
represented in a fraction of all drivers who stop at the location.
While technically a hitchhiker can try to stop cars at any point
of roads, we assume each road has been already assigned
with the best pick-up location and corresponding quality score.
Therefore, the actual waiting time for a lift depends on two
values: the quality of a pick-up location and amount of traffic.

To reduce exponential complexity, we relax time-
dependency constraint and assume that all waiting and riding
times are time-invariant. Therefore, we can apply Bellman
condition of optimality [5], which states that whatever the
initial state and decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting
from the first decision. In our case, it means that if we know
all optimal routes from v1, v2, . . . vk to vdest, the optimal
route from vstart to vdest is a minimum over all sums
of dist(vstart, vi) + dist(vi, vdest), and it allows to apply
standard shortest path algorithms on a new graph. Note that
Bellman condition is true only for intermediate stops on a
path, not all points that a hitchhiker is passing through.

For a single path, a number of possible combinations of lifts
will be reduced to n(n−1)

2 . In the example from Figure 2 all
tree nodes with the same name (C - 2 nodes, D - 4 nodes)
will transform to single nodes. Therefore, there will be only
5 nodes and 10 edges, which is illustrated in Figure 3.

Fig. 3: Lift combinations

Here and after, dotted edges correspond to direct lifts
between nodes. In addition, since travel times on intercity
roads do not vary much, we assume that the travel time is
constant depending on the distance and average vehicle speed.
Since computing PMF on a combination of lifts is compu-
tationally intractable, we will compute the most important
parameter: expected time of a trip. Therefore, one path and
a corresponding combination of lifts is better than another if
its expected travel time (sum of waiting and riding times) is
smaller. Also, we assume there is only one hitchhiker seeking
a ride, and all drivers who stop have free space to take the
hitchhiker on board. In summary, in this paper we aim to
combine the most essential properties of hitchhiking, namely:
• Hitchhiker can choose a next road to thumb up
• Hitchhiker can choose a desired next lift destination
• All rides start and stop only at nodes of a road network
• There are various combinations of lifts along a path
• Pick-up locations have different quality
• Each road has a predefined best location to hitchhike
• Waiting time depends only on a quality of a pick-up

location and amount of traffic on that road
• Drivers’ speed are uniform
• Drivers follow shortest paths on a road network
• Drivers willing to stop independently of a hitchhiker
• Objective function is expected time of a trip
• A driver who stops can take a hitchhiker on board
• Possibility to be dropped off before driver’s destination
while leaving the rest for the future works, summarized

in Section V. Our proposed model and developed heuristic
algorithm are universal and can be successfully applied to all
future works in the area of route planning for hitchhiking.
E. Formulation
Suppose we use a road network as a directed graph G =
(V,E), where V = (v1, v2, ..., vn) is a set of nodes (cities),
and E = (e1, e2, ..., em) is a set of edges (roads). An example
is given in Figure 4.

Fig. 4: Example of a road network

A path P = 〈v1, v2, . . . , vn+1〉 - a sequence of non-
repeated nodes, where i = 1 to n, ei = (vi, vi+1), ei ∈ E.
Next, hitchhiking route is any subsequence of P which
includes v1, vn as starting and ending note. For example, for
a path P = 〈ABCD〉 :

A B C D

a set of routes would be T =
{〈AD〉, 〈ABD〉, 〈ACD〉, 〈ABCD〉}. We have shown
that there are 2|P |−2 hitchhiking routes for each path.

Bellman conditions allow us to divide the original problems
into smaller subproblems. Therefore, there should be multiple
options for a hitchhiker to include all possible combinations
of a pair of an adjacent node and a ride destination. Thus,
we should add new hitchhiking edges for all such pairs and
annotate them with expected travel time.

A hitchhiking graph: HG = (V,E,W), where (V,E)
is a connected directed weighted graph with a set of
nodes V and a set of edges(roads) E, and W =
{(vi, vj , ek)|∀vi can reach vj ; ek is incident to vi} is a set of
hitchhiking edges, each one matching the lift from vi to vj
via each of adjacent to vi edges ek. An example of HG for a
road network from Figure 4 is given in Figure 5.

Fig. 5: Example of a hitchhiking graph

Note that there is only one edge from A to E and two from
B to E which is equal to the number of adjacent edges from A
and B respectively because the hitchhiker has to decide which
road to take. Indeed, each driver will contribute to weight of
n−1 hitchhiking edges if it passes n nodes of a road network
on its way, since a hitchhiker can ask them to stop everywhere.

Since our assumption implies that the success of hitchhiking
relies only on traffic and quality of a pick-up location, we
need to introduce two more sets of input parameters for
estimation weights wi of hitchhiking edges. First, for each
pick-up location at a certain road ei, we denote qi a quality
score which is equal to the fraction of cars that will stop at the
given location. Second, it is a number of cars per time unit
traffic(i, j) at a certain path. Since the amount of traffic
between two nodes (cities) may be estimated with a gravity
law via their populations and a distance between them [10],
we will also include them as Pop(vi)∀vi.

In this paper, we use only the most essential parameter of
a hitchhiker’s trip which is expected travel time. Therefore,
we reformulated a problem of finding an optimal hitchhiking

route to a problem of finding a shortest path on a hitchhiking
graph. We switch from a road network graph with edges V
to a hitchhiking graph with hitchhiking edges W . While road
networks have average degree of 3 for undirected networks,
thus |E| = 3 |V | in the case of directed graphs. Hitchhiking
graph becomes a complete multigraph taking into account ini-
tial graph’s connectivity. Therefore, the number of hitchhiking
edges in the worst case is |W | = O(E · V 2) = O(V 3), but in
case of drivers taking the shortest path on a static road network
there will be not more than one hitchhiking edge with a finite
travel time for each pair of nodes. Complexity of Dijkstra
algorithm using Fibonacci heaps is O(E+V log V), therefore
for the hitchhiking graph it will be O(V 3+V log V) = O(V 3),
which may be slow for large graphs. We propose an edge
pruning method to handle this issue.
F. Edge pruning
Since there are many possible choices for a hitchhiker, our
idea is to reduce the search space by pruning the hitchhiking
edges which are unlikely to be visited. Intuitively, a hitchhiker
will not probably go to a city which is very far from their
source-destination (S-D) pair, or following the edge with long
expected waiting time. Also, nodes with large population
should be considered, since they have more drivers starting
and ending their trips. To sum up, our idea is to reduce the
search space by considering only the hitchhiking edges which
are:

1) Inside of the start-destination ellipse, i.e. nodes v the
∀(start, destination) pair : d(v, vstart)+d(v, vdest) ≤
d(vsource, vdest)+τρ, and τρ is a possible detour budget.

2) Linking only to nodes with a population higher than a
certain population threshold τpop

3) Going only via edges with travel time less than a certain
time threshold τtime

Note that (S-D) pair might be disconnected in a result graph,
so query on a full graph might be required. In the Section IV,
we conduct experiments with parameters τρ, τpop, τtime and
discuss a trade-off between running time and accuracy of the
results of the pruning method.

IV. EXPERIMENTS

A. Experimental setup
We use road networks of European countries from DIVA-GIS
[8] and Eurostat population grids [9]. We use the countries
listed in the Table I.

TABLE I: Road networks and population grids used

Country
name

No. of
nodes

No. of
edges

Total
population

Total road
length, km

Ireland 319 890 4,287,239 12682.47
Portugal 438 1194 9,123,842 16626.21
Netherlands 408 1138 15,807,422 8694.788

The road networks are represented as directed graphs. For
each edge of the road network, assume qi is a pick-up probabil-
ity of the best pick-up location along it. Two settings are used:
all pick-up probabilities are equal, or normally distributed
N(µ, σ). In addition, to prevent potential disconnectivity, we

assume there is a minimum possible pick-up probability which
is equal to 0.001, i.e., in average one car out of 1000 cars
will stop. Next, the population of each grid is assigned to the
closest node of the road network. Then, the traffic between
each pair of nodes in the road network is estimated using
the gravity law [10]. Even though the authors do not mention
the coefficients of the best fitting model, from their graph we
conclude the estimated number of vehicles per year to be

traffic(i, j) = 0.00135 · (Pi · Pj)
d2ij

1.02

where Pi, Pj are populations of corresponding cities and dij
is a distance in km between them. This traffic is assigned to
all pairs of nodes on the shortest path.

After that, a full hitchhiking graph is created from a set of
nodes from the road network. Each road’s traffic is assigned to
all hitchhiking edges which pass through it. The ravel time (i.e.
weight) on hitchhiking edges consists of waiting time on the
first edge of it and riding time. The waiting time is estimated
using qi and traffic(i,j), and the riding time is estimated using
the average driving speed (equal to 90km/h) and length of
the path corresponding to the edge.

At the second stage, we construct a pruned hitchhiking
graph for each pair of source and destination points using
threshold values. Since the absolute threshold values may vary
depending on the dataset, we need to use relative values.
Hence, for each dataset, 100000 shortest paths are computed
for random S-D pairs on a full graph. Three values are
extracted from each of the resulting paths: the population
of all nodes on a path, the distance from each of the path
nodes to the shortest path between the S-D shortest path
on the road network, and the travel time. These values are
saved in sorted arrays, and we extract p-th percentiles to
obtain corresponding thresholds τpop, τρ, τtime. Therefore, we
are able to use the percentiles for each of the datasets rather
than absolute values. We extract S-D pairs proportionally to
the population in corresponding nodes (to verify the potential
usage of a hitchhiking recommender system).

For the same S-D pair, we compare performance of the
Dijkstra’s shortest path algorithm [7] on both full and pruned
graphs for the hitchhiking travel time HTT and the query
running time QRT . Therefore, HTT =

HTTf

HTTp
= 0.9 means

that travel time for a hitchhiker on a pruned graph is only 10%
more than on a full graph, and QRT =

QRTf

QRTp
= 5 means a

speed-up in 5 times for a query on a pruned graph.
For each of the sets of percentiles, we simulate 1000 S-D

queries for each country. Since S-D pair might be disconnected
on a pruned graph, we only use those sets of percentiles where
number of such pairs is less than10%. After that, mean HTT
and QRT are calculated. All experiments are performed on a
PC with 3.4GHz CPU and 16GB RAM.

B. Results
In our model, qi are distributed via N(0.1, 0.1), and the results
on different µ, σ are similar. We use percentiles of parameters
as shown in Table II, where 0-th and 100-th percentiles

correspond to the minimum and maximum values from the
experiments on a full graph, and other percentiles showed less
effectiveness and thus are not included in this section.

TABLE II: Parameters settings

P (τpop) [0,1,2,5,10,15]
P (τtime) [85,90,95,98,99,100]
P (τρ) [85,90,95,98,99,100]

The general distribution of QRT and HTT over the coun-
tries for different sets of percentiles is shown in Figure 6.

Fig. 6: QRT and HTT over sets of percentiles for countries

The points of best sets of percentiles are in top right corner.
Generally, the performance of the pruning method is better
in the Netherlands due to its higher traffic (distances are
smaller, population is higher). Then, results over each sets of
percentiles are averaged and shown in Figure 7.

Fig. 7: Average QRT and HTT over sets of percentiles

There are a few non-dominated points, and we can take
(0.95, 6.56) which corresponds to the set of percentiles
P (τpop) = 2, P (τtime) = 98, P (τρ) = 90. Therefore, using
a pruned graph, a hitchhiker can get a result of their query in

6.56 times faster, while the average travel time will be only
1− 0.95 = 5% slower than using a complete graph.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we provided an overview of hitchhiking, and
formulated the hitchhiker’s problem of finding an optimal
route between two points on a road network. We designed
a hitchhiking graph which integrates the most important prop-
erties of hitchhikers and provides a complete set of choices
that could be made by a hitchhiker. While the total number of
possible options for a hitchhiker is large, our pruning technique
reduces the computational time while having similar accuracy.
For example, using our pruning method,we reduce running
time in 6.56 times comparing to the running time of a query
on a full graph, while the average expected travel time for a
hitchhiker is just 5% larger.

This work is the first one to analyse hitchhiking from a
route planning perspective, and future works could include
other heuristics to decrease the search space and speed-up
the running query time. In addition, an important idea is to
reduce precomputing time for constructing a full hitchhiking
graph. Consequently, studying time-dependent graphs is an
important direction. Next, a case with multiple possible pick-
up location at all roads points might be considered. Finally,
the impact of multiple hitchhikers using the same locations
may be researched, as well as cases of multiple hitchhikers
and limited capacity of cars.

REFERENCES

[1] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris
Harrelson, Veselin Raychev, and Fabien Viger. Fast Routing in Very
Large Public Transportation Networks Using Transfer Patterns. In
Proceedings of the 18th Annual European Conference on Algorithms:
Part I, ESA’10, pages 290–301, Berlin, Heidelberg, 2010. Springer-
Verlag. 00086.

[2] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Mller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and
Renato F. Werneck. Route Planning in Transportation Networks.
arXiv:1504.05140 [cs], April 2015. 00117 arXiv: 1504.05140.

[3] Hannah Bast and Sabine Storandt. Frequency-based Search for Public
Transit. In Proceedings of the 22Nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPA-
TIAL ’14, pages 13–22, New York, NY, USA, 2014. ACM. 00008.

[4] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast
routing in road networks with transit nodes. Science, 316(5824):566–
566, 2007.

[5] Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, USA, 1 edition, 1957.

[6] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability
and distance queries via 2-hop labels. In Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02,
pages 937–946, Philadelphia, PA, USA, 2002. Society for Industrial and
Applied Mathematics.

[7] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numer. Math., 1(1):269–271, December 1959.

[8] Diva-gis country data. http://www.diva-gis.org/gdata, 2017.
[9] Geostat 2011 grid dataset. http://ec.europa.eu/eurostat/web/gisco/geodata/

reference-data/population-distribution-demography/, 2017.
[10] Woo-Sung Jung, Fengzhong Wang, and H. Eugene Stanley. Gravity

model in the Korean highway. EPL (Europhysics Letters), 81(4):48005,
February 2008. 00106 arXiv: 0710.1274.

[11] Fabian Kotz. The base-rate of hitch-hiking success and its moderators:
A meta-analysis. Transportation Research Part F: Traffic Psychology
and Behaviour, 46, Part A:149–160, April 2017. 00000.

[12] Oleksii Vedernikov, Lars Kulik, and Kotagiri Ramamohanarao. The
Hitchhikers guide to the pick-up locations. Open Geospatial Data,
Software and Standards, 1(1):12, December 2016. 00000.

