
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337215246

Optimal route planning for stochastic time-dependent hitchhiker’s problem

Article in Journal of Location Based Services · November 2019

DOI: 10.1080/17489725.2019.1682202

CITATIONS

0
READS

20

3 authors:

Some of the authors of this publication are also working on these related projects:

Logic Databases View project

Credibility Inference View project

Oleksii Vedernikov

University of Melbourne

4 PUBLICATIONS 5 CITATIONS

SEE PROFILE

Lars Kulik

University of Melbourne

156 PUBLICATIONS 3,362 CITATIONS

SEE PROFILE

Kotagiri Ramamohanarao

University of Melbourne

512 PUBLICATIONS 9,699 CITATIONS

SEE PROFILE

All content following this page was uploaded by Oleksii Vedernikov on 24 February 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/337215246_Optimal_route_planning_for_stochastic_time-dependent_hitchhiker%27s_problem?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/337215246_Optimal_route_planning_for_stochastic_time-dependent_hitchhiker%27s_problem?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Logic-Databases?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Credibility-Inference?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oleksii_Vedernikov?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oleksii_Vedernikov?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Melbourne?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oleksii_Vedernikov?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lars_Kulik?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lars_Kulik?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Melbourne?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lars_Kulik?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kotagiri_Ramamohanarao?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kotagiri_Ramamohanarao?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Melbourne?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kotagiri_Ramamohanarao?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oleksii_Vedernikov?enrichId=rgreq-fd82c1b429559ae92886a7524a0386dd-XXX&enrichSource=Y292ZXJQYWdlOzMzNzIxNTI0NjtBUzo4NjIwNjg2MjIyNDk5ODVAMTU4MjU0NDU4NDg2OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Optimal Route Planning for Stochastic Time-Dependent

Hitchhiker’s Problem

Oleksii Vedernikov, Lars Kulik, Kotagiri Ramamohanarao

School of Computing and Information Systems

The University of Melbourne, Australia

{ovedernikov, lkulik, kotagiri} @unimelb.edu.au

February 24, 2020

Abstract

Hitchhiking is a travel mode characterized by unpredictable travel times involving sev-

eral possible combinations of lifts on roads. In this paper, we formulate a hitchhiker’s

problem and develop a time-dependent stochastic route planning algorithm for hitchhik-

ers. Namely, we introduce a concept of the stochastic time-dependent hitchhiking graph

to find hitchhiking strategies with the least expected travel time or maximized reliability.

We introduce various heuristics to prune the original hitchhiking graph to improve com-

putational efficiency. We provide a complexity analysis of the problem and evaluate the

proposed solution on real-world networks of several countries.

Keywords— Hitchhiking, ridesharing, route planning

1 Introduction

Hitchhiking is a well-known ridesharing transportation mode that is characterized by numerous hopping

on and off random vehicles. Today, hitchhikers in Western countries constitute a large community of

travellers with their subculture, clubs and social networks where they share their trip experience. For

example, the website Hitchlog [15] contains trip records with a total length of more than 2,300,000 km,

and another website Hitchwiki [16] contains annotations and users’ ratings for 24,000 pick-up locations

all around the world. Due to the unpredictability of hitchhiking, travel times might be significantly

longer compared to those of private cars. Thus, an algorithm for providing a proper solution to handle

multiple lifts, varying traffic and possible long waiting times is crucial in assisting trip planning for

hitchhikers.

In a recent study [30], the concept of a static hitchhiking graph has been introduced to represent all

possible lifts that a hitchhiker could take for travel. This model incorporates deterministic waiting times

at pick-up locations and travel times on roads. However, it does not fully represent the unpredictable

nature of hitchhiking as a transportation mode. The static hitchhiking graph does not include the

variability of waiting and driving times during the day as well as their probabilistic nature. The waiting

time for a hitchhiker at a certain location could vary more than travel time on roads for a car, so it

follows a probabilistic distribution which varies over time of day due to the periodicity of road traffic

flows.

1

In this paper, we tackle these challenges by introducing a stochastic time-dependent hitchhiking

graph, which takes into account waiting and driving time distributions and their variations over time.

Because of the variability of travel times, an optimal hitchhiking strategy may not include one shortest

path but be comprised of several paths from some intermediate points depending on the arrival time.

In contrast to most common shortest path algorithms which try to find an exact path to be traveled, we

consider a path program, which specifies time-dependent decisions that should be taken by a hitchhiker

depending on the arrival time at a location. We are finding the optimal hitchhiking path program to

minimize the expected travel time and maximized route reliability.

Experiments show that computing optimal path programs might be computationally expensive,

therefore heuristics to reduce the size of hitchhiking graphs without losing optimality for hitchhiking

path programs are needed. We propose two methods for graph reduction based on the K-shortest

path and penalty method with Customizable Contraction Hierarchies. The latter is shown to perform

queries that are faster in orders of magnitude without sacrificing optimality. Our proposed solution is

the foundation of a route recommender system for hitchhikers that can be extended to a ridesharing

application with prearranged rides on a long-distance scale.

The main research question of this work is: for a given road network, time-dependent stochastic

travel time distributions, start and destination points for a hitchhiker, how can we efficiently find a path

program to minimize least expected travel time for hitchhikers? To answer this question, we analyze

various hitchhiking hypergraph pruning techniques to reduce the computational time for real-world

scenarios, utilizing the road networks and simulated traffic data from several countries.

The key contributions of this paper are:

• Formalization of stochastic time-dependent hitchhiking graphs to handle uncertain and varying

waiting times for hitchhikers;

• Development of a framework to find the minimized expected travel time and most reliable hitch-

hiking path programs;

• Creation of efficient heuristics for reducing problem size without losing accuracy in path program

recommendation.

The remainder of the paper is organized as follows. Section 2 provides a review of existing research

about hitchhiking, stochastic time-dependent route planning and alternative graph construction. We

will describe hitchhiker’s problem and outline our solution in Section 3. Then, Section 4 contains the

results of experiments for hitchhiking graphs for various countries. Lastly, Section 5 concludes our

findings and describes future work for the hitchhiker’s problem.

2 Literature review

2.1 Hitchhiking

To the best of our knowledge, the only paper about route planning for hitchhikers is a recent study

be Vedernikov et al. [30], and the limitations of this paper regarding unrealistic and oversimplified

travel times are discussed later. Another study [29] investigates and predicts waiting time and rating of

pick-up locations for hitchhiking based on various features such as road type and distance to facilities.

The paper does not address an issue of finding an optimal hitchhiking strategy. Previous research

about various factors as gender or appearance, which determine the willingness of drivers to stop are

summarized in a meta-analysis by Kotz [20].

2

2.2 Stochastic time-dependent route planning

First approaches of time-dependent deterministic route planning were made by Dreyfus [11] and Cooke

and Halsey [7]. Bast et al [5] provide a comprehensive survey of different approaches for route plan-

ning, including time-dependent. Delling and Wagner [9] consider various speed-up techniques for time-

dependent road network route planning, but they assume deterministic travel times. Hall [14] formulated

the minimum expected time problem for stochastic time-dependent (STD) networks. He also showed

that standard directed graphs cannot handle a problem of both time-dependent and stochastic route

planning where routing directions might vary for different times. This work is the first one to introduce

path program (also known as time-adaptive strategy and optimal routing policy) instead of the shortest

path. Orda and Rom [26] provide a survey of different waiting conditions on a deterministic network.

Pretolani [28] was the first to connect STD path program to the shortest hyperpath on a hypergraph,

while a similar approach was used earlier by Nguyen and Pallotino [23] for urban transit applications. A

recent approach by Bast and Storandt [6] utilizes the use of an expected frequency of transport instead

of schedules. Miller-Hooks and Mahmassani [22] provide two similar algorithms - SDOT and ALET - to

find least expected travel time path programs in STD networks, and ALET performs better for dense

networks. Nielsen [25] extends hypergraph algorithms introduced by Gallo et al. [12] this idea to find

the K best path programs and bicriterion path program in STD networks. Among other applications,

time-dependent route planning has been proposed for flight networks [8]. However, for a hitchhiker’s

problem, the number of edges is much larger, and some of these methods become computationally in-

feasible. Also, most of the algorithms for optimal path programs on STD networks have been tested on

simulated grid networks, not on real-world road networks.

2.3 Alternative graph construction

The most common application of alternative graphs is to provide alternative routing directions while

navigation [4], and therefore its quality measures are usually related to the easiness of navigation while

preserving optimality of produced paths. A related idea of alternative paths [3] finds the paths which

share not more than a certain fraction of length with the shortest path, not too longer than the shortest

path, and each segment of them is the shortest path itself.

K-shortest path algorithm to find top-K loopless shortest paths is a well-studied problem [31] that

could be directly applied to find alternative graphs as a union of K-shortest paths. The Plateau method

was introduced in [21], and its idea lies first in expanding two search trees: a forward tree from the

source node and a backward tree from the destination node until they meet. Then, selecting the edges

that appear in both searches (plateau) give a skeleton of an alternative graph.

The Penalty method is a state-of-the-art technique which iteratively computes shortest paths and

increases their weights [27]. In [18] authors use the Customizable Route Planning technique for the quick

computation of updating edge weights, which was later outperformed by Customizable Contraction

Hierarchies (CCH) [10, 13]. To the best of our knowledge, we are the first to incorporate the CCH

algorithm for the penalty method.

A related idea of reducing graph pruning without sacrificing the quality of path programs is con-

sidered in [19], but they consider different stochastic on-time arrival problem (SOTA) [24]. In order to

reduce the complete road graph, they use Penalty, Plateau and Turn corridor methods. Turn corridor

is computed as a union of all edges that could be taken with k detours from the shortest path. In

the experiments, Turn and Penalty method provide a reasonable trade-off between sacrificing the most

optimal strategy for the running time, while Plateau method is outperformed by Penalty method.

Also, all proposed alternative graph ideas are mostly related to the navigation, therefore they use

3

different criteria for assessing the quality of alternative graphs.

3 Problem description

3.1 Static/Stochastic Time-Dependent Hitchhiker’s Problems

We begin by introducing hitchhiking as a transportation mode. In this scenario, a hitchhiker is willing

to travel from a source city to a destination city on a certain road network. We assume that the road

network is a country’s highway system. In order to travel, hitchhikers must ask passing drivers for lifts.

Drivers do not change their route but can stop at any node and a hitchhiker may leave the vehicle

and wait for another lift at that point. Therefore, hitchhikers may have multiple lifts from different

drivers in their travel. The hitchhikers can look for lifts to any destination node (e.g. writing the

desired destination on a sign), not necessarily the next city on the current edge or their desired final

destination. They can start and finish rides on all nodes of the road network, and can also wait for the

lifts to the same destination at different roads starting within the same city.

The maximum number of possible travel options for a vehicle driver while driving is upper-bounded

by the number of edges in a road network: O(N), when all edges intersect in a single node. Unlike

a vehicle driver, a hitchhiker can seek a lift at any road to any another town on the road network.

Therefore, the total number of these desired lifts, or possible options a hitchhiker can take, is O(N2) as

has been shown in [30], which comprises a complete graph. In both cases, it is assumed that the paths

are loop-less. Therefore, routing for hitchhikers has significantly higher complexity than route planning

for vehicle drivers.

In the model, time-independent and deterministic waiting and driving times as respective average

values are used. The concept of a static hitchhiker’s problem given as: for a given source and destination

points on a certain road network and average travel times for hitchhikers on it, how to find the path with

the shortest travel time? However, in the real world, waiting times for hitchhikers can vary significantly

over time of a day. While driving on the same road takes almost the same time during day or night with

considerably different delays due to congestion, waiting times might vary in hours due to the variability

of traffic flows. Also, waiting times in the real world is never deterministic and is very probabilistic

by nature depending on various factors. Therefore, their model is rather restricted, and our goal is to

incorporate time-dependent and stochastic times and define it as a stochastic time-dependent hitchhiker’s

problem.

We incorporate the following properties into our country-scale hitchhiking model:

• All rides start and stop only at the road network nodes

• Hitchhikers can choose the next road to thumb up

• Hitchhikers can choose a desired next lift destination

• There are various combinations of lifts on a path

• Each road has a predefined best location to hitchhike which is characterized by a fraction of cars

qi which stop there

• Waiting time depends only on qi and traffic on that road at a certain time

• Drivers’ speeds are uniform

• Drivers follow the shortest paths on a road network

• Drivers are willing to stop independently of a hitchhiker

• A driver who stops can always take a hitchhiker on board

4

• There is the possibility to be dropped off before the driver’s destination

• Travel time consists of waiting and driving time

• Travel time at an edge at a given departure time is a discrete random variable with a certain

probability distribution.

In the following subsection, we will show how the difference between static and dynamic hitchhiker’s

problems will imply solving a significantly more difficult routing problem for the latter.

3.2 Static and Stochastic Time-Dependent Hitchhiking Graphs

First, we begin by introducing different types of graphs used in this study. They are shown in Figure

1.

Figure 1: Schema of graphs

Road network graph G = (N,E, l) is a weighted directed graph where N is a set of nodes (vertices)

corresponding to cities and E set of edges corresponding to roads on a road network. ∀e ∈ E its weight

l(e) : E → R is defined as a length of the corresponding road. An example of the road network graph

is given in Fig. 2.

Figure 2: Road network graph G

The shortest path problem on G equal to finding a path with the minimum sum of weights on roads.

This is a well-studied problem that generalizes the optimal route finding for vehicles.

However, the road network graphs G are not applicable to the problem of optimal route planning

for hitchhikers since a hitchhiker can choose an intended destination at any intermediate node, not only

the next edge. To handle this issue, the concept of static hitchhiking graph has been introduced [30].

Static hitchhiking graph SHG = (N,HE,w) is a weighted directed graph where N is the same set of

5

nodes as G, while HE = {(ni, nj)|ni can reach nj : ni, nj ∈ N} is a set of hitchhiking edges, which

correspond to all possible decisions that could be made by a hitchhiker traveling on a road network

G: they can ask for a lift at any pick-up location to any other node from N . In order to annotate all

hitchhiking edges ∀e ∈ HE with corresponding travel times, weights w(e) : HE → R are introduced

which are equal to average travel time on the edge e. w(e) = t(e) + τ(e) is a sum of average waiting

time t(e) for a hitchhiker to be picked up and average driving time τ(e) on it. An example of SHG with

weights w(e) is shown in Figure 3. To construct these weights, new values are needed as traffic on roads

and pick-up probabilities of locations on every road e ∈ E. We discuss how to obtain these parameters

in Section 4. We also refer to hitchhiking edges as simply edges in this paper. Note the shortest path

between a and d is 7.5.

Figure 3: Static hitchhiking graph SHG with static travel times

To add stochastic and time-dependent components to SHG, we define stochastic time-dependent

hitchhiking graph STDHG. Assume we have a discrete time horizon Thorizon = {0, 1, 2, . . . , tmax}
corresponding to all possible timestamps in our problem. We define STDHG = (N,HE,W) using N

and HE the same as in SHG, while instead of average travel time we use a discrete random variable

we,t ∈ W with corresponding probability mass function (PMF) fwe,t(x) = Pr[we,t = x], where its

domain D(fwe,t) is a set of all possible travel times and range R(fwe,t) contains their probabilities.

Therefore, a travel time along hitchhiking edge e ∈ HE for each starting time t can have multiple

values with corresponding probabilities from PMF fwe,t(x), and let pmax be the maximum possible

number of values among PMFs for ∀e ∈ HE. Therefore, stochastic and time-dependent travel times

we,t in STDHG allow us to represent the unpredictable nature of hitchhiking and overcome overly

simplistic approach of average travel times in SHG. A structure of STDHG is the same as SHG and

is shown in Fig. 3, while travel time distributions are shown in Table 1. Note that static travel times

in Figure 3 are essentialy the weights w(e) of SHG.

Table 1: Travel times of edges in SHG
(u,v),t (a,b), 0 (a,c), 0 (a,d), 0 (b,c)∀t (b,d), 1 (b,d), 2 (c,d)∀t
D(fw(u,v),t

) {1,2} {5} {8,9} {3} {4} {8} {3}
R(fw(u,v),t

) {0.5,0.5} {1} {0.5,0.5} {1} {1} {1} {1}

However, in such case, the notion of a shortest path is no longer applicable. For example, taking a

ride along hitchhiking edge e = (ni, nj) at time t0, the travel time we,t = w(ni,nj),t might take multiple

values from range {t1, t2, . . . tp} according to PMF fwe,t(x). However, the next hitchhiking edge from

nf in an optimal route might vary depending on different arrival times {t1, t2, . . . tp} to nf . Therefore,

instead of a path, we are interested in a path program which is a rule that assigns the next road

depending on both the current node and arrival time. We consider a priori scenario when a hitchhiker

has to receive the whole strategy before the trip started due to the possible absence of network upon

arrival at intermediate nodes.

6

Table 2: Expected travel times for TPP on STDHG
No. path program Pa,d,0 E(wP)
1 (a,b),(b,c),(c,d) 7.5
2 (a,b),(b,d) 7.5
3 (a,c),(c,d) 8
4 (a,d) 8.5
5 (a,b),[1:(b,c),(c,d),2:(b,d)] 8.5
6 (a,b),[1:(b,d),2:(b,c),(c,d)] 6.5

Definition 1 For a given source and destination nodes {s, d} ⊂ N and departure time ts ∈ Thorizon,

Travel Path Program (TPP) is a function Ps,d,ts : S → HE, where S ⊂ {(n, t) : n ∈ N, t ∈ Thorizon}
assigns for each intermediate node n and arrival time t the next hitchhiking edge e ∈ HE that a hitchhiker

has to take and satisfies following properties:

1. (s, ts) ∈ S ∧ (s, t′) /∈ S ∀t′ 6= ts

2. ∃n, t : Ps,d,ts(n, t) = (n, d)

3. ∀(n, t) ∈ S, t′ ∈ R(w(n,Ps,d,ts (n,t)),t
) =⇒

(Ps,d,ts((n, t), t+ t′) ∈ S

An informal example of TPP of graph in Figure 3 and travel times from Table 1 from a to d at

ts = 0 will be: take an edge (a, b), then if arrive at t = 1, take (b, c) and then (c, d), otherwise take

(b, d).

TPP Ps,d,ts , also called a hyperpath, represents a hitchhiking strategy and provides routing choices

for travelers from all nodes and leaving times in the time horizon. That is, a hitchhiker leaving node n

at time t travels along hitchhiking edge Ps,d,ts(n, t). For example, if a traveler arrives at node n at time

10am, they should follow a hitchhiking edge e1, if they arrive at 11am, they should travel along e2 etc.

Due to probabilistic nature of hitchhiking edges in STDHG, for each TPP Ps,d,ts the total travel

time will be a discrete random variable wPs,d,ts
with PMF fwPs,d,ts

(x). Therefore, the notion of the

shortest path in SHG between s and d as a path with a minimum sum of travel times is no longer valid,

so we can define Optimal Path Program as TPP with the least expected travel time E(wPs,d,ts
).

Definition 2 For a given source and destination nodes {s, d} ⊂ N and departure time ts ∈ Thorizon,

Optimal Path Program (OPP) Popt is TPP between s and d such that: E(wPopt) ≤ E(wP)∀Ps,d,ts that

satisfies Definition 2.

Table 2 has expected travel times for TPP on STDHG from a to d and with ts = 0. Path program

6 has the least expected travel time E(wP) = 6.5, so it is OPP. Note that it is less than expected travel

time on SHG which is 7.5.

Therefore, OPP is a hyperpath starting from s at time ts that provides routing choices for all

possible intermediate nodes and times, ends at d and has the least expected travel time. However, since

this TPP might have travel times 5 or 8, in some cases TPP 1 or 2 might be preferred because they

always have stable travel time and thus are more reliable. In Subsection 3.3.2, we discuss that instead

of minimizing E(wP), a path reliability function can also be chosen.

3.3 Optimal Path Program for STDHG

Our notion of stochastic time-dependent hitchhiking graphs aligns with the previous research of stochas-

tic time-dependent routing in different transportation networks. While the overall discussion about

7

literature findings regarding OPP is in Section 2, we summarize the findings of two algorithms to find

OPP in STDHG.

3.3.1 ALET

Adaptive Least Expected Time (ALET) algorithm was proposed by Miller-Hooks [22] and is an algorithm

to find OPP. For each node, it maintains a vector with the least expected times to the destination node

known thus far, and this vector is updated while iterating over edges. The pseudo-code is given in

Algorithm 1, assuming the departure time t = 0.

Algorithm 1 ALET algorithm

1: procedure ALET(STDHG, s, d) . Find OPP
2: Exp(n, t)←∞, n 6= d, t ∈ Thorizon . Expected optimal
3: Exp(d, t)← 0, t ∈ Thorizon . travel time to d
4: Prev(n, t)← None, n ∈ N, t ∈ Thorizon . Prev. node in PP
5: Push(SE, d)
6: while SE 6= ∅ do
7: i← Pop(SE)
8: for j ∈ STDHG−1(i) do . (j, i) ∈ HE
9: for t ∈ Thorizon do

10: temp← 0
11: for t′ ∈ R(w(j,i),t) do
12: sum← sum+ fw(j,i),t

(t′) · (t′ + Exp(i, t+ t′))
13: end for
14: if temp < Exp(n, t) then
15: Exp(j, t)← temp
16: Prev(j, t)← i
17: if j /∈< SE then
18: Push(SE, j)
19: end if
20: end if
21: end for
22: end for
23: end while
24: return Exp(s), P rev(s)
25: end procedure

Its worst-case complexity is O(N3 · t2max · pmax), where pmax is the maximum possible number of

travel time probabilities, and tmax is a number of timestamps in Thorizon. Experiments presented in [22]

show the actual running time is smaller than the worst-case scenario.

3.3.2 MinHypertree algorithm

Pretolani [28] proposed to use hypergraphs, where each edge can have multiple tail nodes representing

different possible arrival times and connected OPP problem to finding a minimum weight hyperpath

on a new hypergraph described below. Note we simplify some notations here comparing to the original

paper.

Definition 3 A weighted directed hypergraph H = (V,A,WH) is consists of a set of vertices V , hyper-

arcs A and weights WH : A→ R. A hyperarc a = (Tail(a), head(a))∀a ∈ A where Tail(a) ⊂ V is a set

of tail vertices and head(a) ∈ A \ Tail(a) is a head vertex.

8

In order to construct H = (V,A,WH) from STDHG = (N,HE,W): V = {(n, t) ∀n ∈ N, t ∈ Thorizon}∪
{s′}, A = {({(nj , t′) : t′ ∈ R(w(ni,nj),t)}, (ni, t)) ∀(ni, nj) ∈ HE, t ∈ Thorizon} ∪ {({s

′}, (d, t))∀t ∈
Thorizon}. Therefore, we construct a new vertex v ∈ V for each pair of (node in N , timestamp from

Thorizon) plus a new source s′, and they are connected with hyperarcs a ∈ A where a set of tail vertices

corresponds to all possible probabilities of travel times from one node to another along a hitchhiking edge

e ∈ HE. Note that its orientation is reversed. Besides, we connect a new source s′ to all vertices which

correspond to pairs (the original destination d, all possible arrival times t to d). The new destination

d′ = (s, 0) is a vertex corresponding to the original source and departure time 0.

An example of hypergraph H constructed from example SHG from 3 and travel time distributions

from Table 1 is shown in Figure 4, where for the simplicity nodes (n, t) are depicted as nt. In this case,

d′ = (a, 0), and s′ is has hyperarcs to all (d, t) that correspond to possible arrival times to the original

destination d.

Figure 4: Hypergraph H constructed from hitchhiking graph SHG

For example, multiple arriving times 8, 9 to d in a hitchhiking edge (a, d) are represented as a

hyperarc with multiple tail vertices that correspond to them: head is a0, and tail contains d8 and

d9. This representation allows us consider multiple arriving times, and we introduce computation of a

hyperpath weight that corresponds to the expected travel time of a certain TPP . A hyperpath between

s′− d′ is defined using Definition 2. For any s′− d′ hyperpath its weight (or expected travel time on it)

is calculated as

WH(v) =

0 v = s′

wH(p(v)) +
∑
u∈Tail(p(v)) fwu,tWH(u) v 6= s′

where

wH(a) =

t a = ({s′}, (d, t))

0 else

where p is a predecessor function which assigns a preceding arc a for each vertex v on a hyperpath.

The weight of a hyperpath is related to all possible probabilities of travel times in all edges e and arrival

times to d. In case of H, we need to find a minimum weight hyperpath between s′ and d′. Note that it

is also reversed to the original hyperpath between s and d as shown in 4. Using the assumptions that

travel times are positive, vertices of a hypergraph H can be ordered (s′ = v1, v2, . . . , v‖V ‖) and we can

9

use the Algorithm 2 to find a minimum weight hyperpath.

Algorithm 2 Minimum weight hyperpath algorithm

1: procedure MinHypertree(H, s′, d′, V)
2: Exp(vi)←∞,∀i ∈ {2, 3, . . . , ‖V ‖}
3: Exp(s′)← 0
4: for i = 2 to ‖V ‖ do
5: for a ∈ H−1(vi) do . a = (Tail(a), vi) ∈ A
6: if WH(vi) > wH(a)+
7:

∑
u∈Tail(p(v)) fwu,t

WH(u) then

8: WH(vi) = wH(a) +
∑
u∈Tail(p(v)) fwu,tWH(u)

9: end for
10: end for
11: return Exp(d′)
12: end procedure

The overall complexity of this algorithm is O(‖HE‖ · tmax · pmax) = O(N2 · tmax · pmax). With a

minor change in the algorithm, WH(vi) contains maximum possible travel time, and no calculation of

expected travel time is needed. We analyse the usage of both algorithms in Section 4.5 and describe

the difference between various weight functions in Section 4.7.

3.4 Alternative hitchhiking graphs

While solving the OPP on STDHG will give the path program with the minimum expected travel time,

finding it requires to include time-dependent and stochastic distributions for all edges in the graph. Each

edge on SHG will result in multiple edges on STDHG for each time interval which might result for

different time programs and requires a lot of computational resources. Later, we show that computing

ORP on a complete SHG will require several minutes even for a road network G with 200-300 nodes.

However, not all edges on SHG will be used for OPP on STDHG. This OPP will contain a set

of edges which are close (i.e. adjacent or parallel) to the shortest path edges on SHG. While certain

sub-optimal paths on SHG might have less travel time than the optimal path, considering the that

travel times on both paths vary over time, they still could be a part of OPP for some time periods.

Therefore, corresponding edges on SHG will be used in OPP for STDHG in addition to the edges from

the shortest path on SHG. At the same time, edges on SHG which lie far from the shortest path are

less likely to be included in the OPP.

Therefore, we are interested in preselecting the edges from the original SHG which are more likely

to be included in the STDHG. These edges constitute a new subgraph of SHG, and we define it as

Alternative Hitchhiking Graph (AHG). Alternative graphs as a set of alternative paths to the shortest

path. Their usage is discussed in Section 2.

After preselecting AHG from SHG, we can extend it to Stochastic Time-Dependent Alternative

Hitchhiking Graph, or STDAHG and find the OPP on it. Some of the edges in SHG might be a part of

OPP on STDHG but not be selected in AHG, therefore they will not appear in OPP on STDAHG. As

a result, this OPP on a subgraph STDAHG will have a larger expected time than OPP on a complete

graph STDHG. Therefore, a quality measure of a method to construct AHG is a minimized difference

between OPP on these graphs. Another important measure is how the reduced size minimizes query

running time, and both of them will be discussed in Section 4. We introduce 2 methods of constructing

AHG.

10

3.4.1 K-shortest paths

K-shortest path problem is a well-known generalization of the shortest path problem. It aims to find

not only the shortest path on a graph, but also K shortest, or suboptimal, paths, in increasing order.

Therefore, for each K, we can define AHG as a union of all edges which are included in the first K

shortest paths. The larger K, the more edges are in the corresponding AHG. Also, new suboptimal

paths are likely to contain combinations of previously included edges and do not produce new edges.

We provide a listing of Yen’s algorithm [31] in Algorithm 3.

Algorithm 3 K-shortest path

1: procedure KSP(G, s, d,K)
2: A[0]← BidirectionalDijkstra(G, s, d)
3: B ← PriorityQueue()
4: G0 ← G
5: for k = 1 to K − 1 do
6: for i = 0 to length(A[k − 1])− 2 do
7: spurNode← A[k − 1][i]
8: rootPath← A[k − 1][0 .. i− 1]
9: for path ∈ A do

10: if path[0 .. i− 1] = rootPath then
11: remove (path[i], path[i+ 1]) from G
12: end if
13: end for
14: for rootPathNode ∈ rootPath \ {spurNode} do
15: remove rootPathNode from G
16: end for
17: spurPath← BidirectionalDijkstra(G, spurNode, d)
18: B.put(rootPath+ spurPath)
19: G← G0

20: end for
21: A[k]← pop(B)
22: end for
23: return ∪∀e∈p,∀p∈A{e}
24: end procedure

In this algorithm, A is an array of K-shortest path sorted by their length, B is a priority queue of

candidate shortest paths. On each iteration, a new path is added to B, which consists of rootPath and

spurPath. rootPath follows the first nodes from one of A paths, and spurPath is a shortest path on

a graph with eliminated edges from paths from A. The resulting alternative graph is a total set of all

edges from all K-shortest paths.

3.4.2 Penalty method

The Penalty method [27] is an iterative run of the shortest path algorithm while increasing the weights of

each shortest path while iterating. They are multiplied by Wupdate, and the total number of iterations is

Niter. In this case, the new edges are included in the shortest paths, and thus in the resulting alternative

graph. This method requires a large number of shortest path runs with graph weight updates. We use

CCH method [10], which for a given graph G and node order π : {1 . . . ‖HE‖} → N constructs an

upward directed graph G∧ where all edges (π(i), π(j)) satisfy i < j, thus keeping edges which lead to

nodes with larger order and contract other while preprocessing. Then, it performs an update procedure

where edge weights are updated. For each query, bidirectional Dijkstra’s algorithm is performed and

11

the resulting path is restored using preprocessed shortcuts. As discussed in 2.3, this work is the first to

incorporate CCH in the Penalty method. We provide the listing of Penalty method using preprocessed

graph G∧π , query and weight update of CCH speed-up technique to find shortest paths in Algorithm 4.

Algorithm 4 Penalty method algorithm

1: procedure Penalty(G, s, d, π,Niter) .
2: A← []
3: G∧π ← CCH Preprocessing(G, π)
4: for i = 0 to Niter − 1 do
5: p = CCH Query(G∧π , s, d)
6: A← A ∪ {p}
7: for (x, y) ∈ p do
8: lx,y ← lx,y ·Wupdate

9: end for
10: G∧π ← CCH UpdateWeights(G∧π , l)
11: end for
12: return ∪∀e∈p,∀p∈A{e}
13: end procedure

One of the most important parameters in its implementation is the order of contraction which

corresponds to their relative importance in the graph. We propose to use the orders based on node

population, degree centrality (number of adjacent edges), and betweenness centrality (fraction of shortest

paths passing through a node).

3.5 Framework

Our framework is shown in Figure 5. All input data is shown in dotted boxes. The goal of the

framework is to recommend a user OPP for their intended trip, and the user could choose either least

expected travel time or most reliable path programs. The framework includes two main parts: the

preprocessing and query stages. The result of the preprocessing stage is constructing SHG with all

stochastic distributions of travel times we,t stored in memory. We do not consider its constructing time

because it does not affect query performance. To solve the cold start problem, we use simulated data

for all required input data as described in Section 4, and then the preprocessing stage could be rerun

using the newly acquired data from the users of the application.

The query stage models user’s behaviour while using the recommender system. A user inputs source

and destination locations and the initial time as their query. For each query, our framework finds OPP

using either STDHG or STDAHG, and we compare their performance in Section 4 as well as the

performance of two methods of finding OPP.

4 Experiments

4.1 Experimental setup and parameters

For the settings of the experiments, we use road networks of European countries from DIVA-GIS [1]

and population grids from Eurostat dataset [2] that are listed in the Table 3. An example of a road

network of Germany is shown in Figure 6.

For each edge of the road network, assume qi is a pick-up probability of the best pick-up location

on it. The pick-up probabilities qi are normally distributed N(0.2, 0.1). We also assume the minimum

12

Figure 5: Framework

Table 3: Road networks and population grids used

Country name
No. of
nodes

No. of
edges

Total
population

Total road
length, km

Austria 468 1194 8425013 14946.09

Belgium 418 1312 10993324 10397.71

Czechia 407 1096 10447899 13967.01

France 3081 9532 62803124 122381.61

Germany 2533 7842 80232606 79935.83

Hungary 572 1496 9964691 18953.76

Italy 1715 5153 59485199 60975.23

Netherlands 380 1082 16655999 8936.33

Poland 1708 5196 38539668 70924.74

Portugal 385 1102 10577568 16811.03

Slovakia 270 692 5406725 9196.07

Spain 2060 6210 46975968 93652.32

Switzerland 340 914 7982181 9235.513

13

Figure 6: Road network in Germany

pick-up probability is equal to 0.001, i.e. in average 1 out of 1000 cars will stop in the worst case. The

population of each grid is assigned to the closest vertice of the road network. Then, the traffic between

each pair of nodes in the road network is estimated using the gravity law [17], and they all are supposed

to take the shortest path between those nodes on a road network. The estimated number of vehicles

per year is traffic(i, j) = 0.00135 · (Pi·Pj)

d2ij

1.02
where Pi, Pj are populations of corresponding cities and

dij is a distance in km between them. To tune the constants of this gravity model, we use real-world

hitchhiking waiting times for each country gathered from Hitchwiki dataset [16]. This traffic is assigned

between all pairs of nodes on the shortest path. After that, a static hitchhiking graph SHG is created.

Each road’s traffic is assigned to all hitchhiking edges which pass through it. The travel time on a

hitchhiking edge is a sum of waiting time on its first edge and driving time along the roads on it. The

waiting time is calculated using qi and traffic(i,j), and the driving time is estimated using the average

driving speed vdr (equal to 90km/h) and the length of the road corresponding to the edge. Therefore,

the more the pick-up probability qi is, the less waiting and thus total travel time is. We discretize all

14

travel times using a parameter δ = 15min, so all times are discretized to Thorizon = {15, 30, 45, . . . 1440}.
We measure travel times for hitchhikers in minutes. We use pmax = 4 as the number of various travel

times in D(fwe,t). We use Yen’s algorithm for k-shortest paths, and k is in range [10, 20, 30, 40, 50]. For

the Penalty method, we use Niter = [5, 25, 50, 100] and Wupdate = 1.2 as suggested in [27].

To find a running time of queries or hitchhiking travel time for a specific dataset and method, we use

100 source-destination queries. We simulate the usage of the hitchhiking route planning application, and

select source-destination pairs using weighted random selection based on the population of corresponding

nodes: the higher the population is, the higher the probability is. Since the number of edges on a

full SHG is O(N2) and most of them have weights which are larger than shortest paths between

corresponding nodes, we reduce those which cannot appear in OPP even with high travel time variability

(more than 1.5 larger than the shortest path). We use Yen’s algorithm for k-shortest paths, and k is in

range [10, 20, 30, 40, 50]. For the Penalty method, we use Niter = [5, 25, 50, 100] and Wupdate = 1.2 as

suggested in [27]. In some cases, we show only the representative results of some countries or queries.

For the experiments, we use Python and C++ code and run experiments on Linux VM with 12Gb

RAM.

4.2 Hitchhiking graphs for different countries

See Table 4 about hitchhiking graphs used in the experiments. We see that in countries with small

distances and high population (i.e. the Netherlands), waiting times is slower and hitchhiking could be

very fast with the least ride changes. However, countries with less population (i.e. Austria) could have

considerably larger waiting times and might require more ride changes.

Table 4: Hitchhiking graphs

Country

N
u
m

b
e
r

o
f

n
o
d
e
s

N
u
m

b
e
r

o
f

h
it

ch
h
ik

in
g

e
d
g
e
s

F
ra

c
ti

o
n

o
f

h
it

ch
h
ik

in
g

e
d
g
e
s

in
re

d
u
c
e
d
S
H
G

M
e
d
ia

n
w

a
it

in
g

ti
m

e
,

m
in

M
e
d
ia

n
d
ri

v
in

g
ti

m
e
,

m
in

M
e
d
ia

n
to

ta
l

tr
a
v
e
l

ti
m

e
,

m
in

F
ra

c
ti

o
n

o
f

w
a
it

in
g

ti
m

e
to

tr
a
v
e
l

ti
m

e

M
e
d
ia

n
n
u
m

b
e
r

o
f

ri
d
e
s

Austria 468 7291 0.033 128.59 416.6 545.19 0.309 7

Belgium 418 7705 0.044 2.79 29.37 32.16 0.095 5

Czechia 407 6686 0.040 25.340 157.42 182.76 0.16 6

France 3081 231637 0.024 16.1 478.01 494.1 0.034 12

Germany 2533 289086 0.045 36.92 323.27 360.19 0.114 9

Hungary 572 8208 0.025 49.83 164.02 213.85 0.304 7

Italy 1715 151528 0.052 32.01 82.17 114.18 0.390 3

Netherlands 380 11934 0.083 1.99 15.14 17.14 0.132 2

Poland 1708 72740 0.025 47.02 224.62 271.64 0.209 6

Portugal 385 7680 0.052 154.19 282.40 436.6 0.546 9

Slovakia 270 3187 0.044 49.64 98.25 147.89 0.505 3

Spain 2060 121427 0.029 8.24 222.12 230.35 0.037 2

Switzerland 340 5531 0.048 5.16 49.56 54.72 0.104 5

15

4.3 Performance of OPP on STDAHG and STDHG for small networks

We find OPP for both STDHG and STDAHG on small networks. so it is possible to assess the

performance of algorithms to construct AHG. OPP on STDHG provides the best possible hitchhiking

strategy, while OPP on STDAHG provides a suboptimal result if the edges included into OPP for

SHG are not included in AHG while construction. Therefore, we can assess the optimality of AHG

construction algorithms by calculating how much of the optimal expected hitchhiking travel time is

preserved. The fraction of optimal expected travel times on STDAHG and STDHG is indicated in

the column ”Accuracy” in Table 5. Also, for each of the method, we compute the proportion of query

running time in ”Query speed-up” column. Penalty method gives almost perfect results for large Niter,

and saves a few minutes considering a sum of the query running time and travel time for the second

graph. Even for the smallest road networks in our dataset, computing STDHG takes too long, so we

need to construct AHG first.

Table 5: Running times for STDHG and STDAHG

Method, k
or Niter

Number
of edges in
AHG

STDAHG
query
running
time, s

OPP on
STDAHG
expected
travel time,
min

Query
Speed-up

Accuracy,
%

STDHG with 97 nodes and 1314 edges. STDHG query running
time 12.27 s; OPP expected travel time: 303.14 min
K-s.p. 10 14.17 0.069 322.72 177.27 93.94

K-s.p. 30 23.76 0.185 312.80 66.23 96.92

K-s.p. 50 29.64 0.294 310.17 41.68 97.73

Pen. 5 14.75 0.016 310.49 773.87 97.63

Pen. 25 43.75 0.086 304.66 142.87 99.50

Pen. 50 67.19 0.154 303.25 79.44 99.97

STDHG with 197 nodes and 5208 edges. STDHG query running
time 432.374 s; OPP expected travel time: 461.28 min
K-s.p. 10 14.98 0.425 519.03 1016.73 88.87

K-s.p. 30 23.91 0.441 502.79 980.72 91.74

K-s.p. 50 29.47 0.452 497.02 955.52 92.81

Pen. 5 21.27 0.459 482.84 941.74 95.54

Pen. 25 68.05 0.762 464.71 567.75 99.26

Pen. 50 110.15 1.175 462.97 367.86 99.64

4.4 K-shortest path and penalty method parameters variation

For the analysis of how hitchhiking travel time and query running time variations over k for K-shortest

path algorithm and Niter in Penalty method, see Figure 7 and Figure 8. Both algorithms follow the

linear time increase with increasing k and Niter, while the gain in terms of hitchhiking travel time

decreases.

4.5 Results for ALET vs MinHypertree

Comparative results for ALET and MinHypertree algorithms for AHG in various countries are shown

in Table 6. We see that while ALET works faster for smaller graphs, it gets slower the larger graphs.

16

Figure 7: K-shortest path method running time

Even though MinHypertree requires more time for constructing all possible pairs of (node, timestamp),

its better computational complexity provides better results in practice as well.

4.6 Results on different node orders for CCH

Since the insertion node order is one of the most important parts of CCH method, we investigate the

following orders: random, total node population, degree centrality, betweenness centrality. The results

are shown in Figure 9, and degree centrality gives the best results on average.

17

Figure 8: Penalty method running time

4.7 Results for expected travel time and reliability

The results of OPP with two objective functions using MinHypertree are shown in Table 7. Finding

TPP with the minimized maximum travel time does not require computation of weighted probabilities

to times, so only comparison and assignment of the maximum possible travel time are done. Therefore,

computing the most reliable path program is done more than twice faster as shown in the ”Fraction”

column.

18

Table 6: ALET and MinHypertree running times

Country
Edges in
AHG

ALET
running
time, s

MinHypertree
running time, s

Fraction

Slovakia 11.39 0.013 0.053 0.246

Hungary 15.92 0.023 0.072 0.318

Netherlands 28.75 0.100 0.332 0.300

Austria 29.16 0.117 0.170 0.691

Switzerland 30.90 0.073 0.116 0.626

Poland 46.40 0.271 0.228 1.187

France 54.27 0.526 0.370 1.420

Italy 83.14 1.651 0.596 2.771

Germany 92.67 1.686 0.508 3.321

Table 7: Expected travel time vs. most reliable route

Country

Median OPP
for least
expected travel
time, ms

Median OPP
for minimized
maximum
travel time, ms

Fraction

Austria 19.001 9.032 0.475

Belgium 16.942 7.733 0.456

Czechia 8.741 4.164 0.476

Hungary 7.833 3.780 0.483

Netherlands 17.002 7.640 0.449

Portugal 17.739 8.191 0.462

Slovakia 8.980 4.293 0.478

Switzerland 16.735 7.713 0.461

4.8 Hitchhiking travel time vs query running time for large graphs

Figure 10 and Figure 11 show the performance of resulting algorithms to compute OPP using MinHy-

pertree on STDAHG. The running time for Penalty method is significantly lower since it is using fast

CCH technique to update weights and quickly find shortest paths. While K-shortest path has feasible

running time for medium-sized networks, the query running time reaches a minute while the hitchhiking

travel time of a found OPP is significantly less than the one found by Penalty method.

4.9 Discussion

Even though we use real-world hitchhiking waiting times from Hitchwiki dataset, the data they provide

does not have a desired destination of a hitchhiker or trip time. While data like hourly road congestion

on country-scale highway networks are not available, our simulated hitchhiking traffic model provides

reasonable results for a proposed route recommendation application. Later, the gathered real-world

data can be used to tune the parameters of our framework.

Computing STDHG and STDAHG on small graphs, we can compare performance of our AHG

construction algorithms to the best-case scenario, and in most cases, the resulting AHG contains all

edges from OPP on SHG, especially for Penalty method. Therefore, the resulting accuracy exceeds

99% for them, meaning optimal path programs on STDAHG is almost equal to that one on STDHG,

while the query speed is faster in orders of magnitude. We see that behavior of our AHG construction

19

Figure 9: Penalty method running time vs CCH order

methods K-shortest path algorithm works reasonably well only for graphs with a few hundreds of nodes,

while Penalty method with CCH performs queries within 1−2 seconds for networks with a few thousand

nodes and hundreds of thousands of hitchhiking edges. Regarding computing OPP for STDHG and

STDAHG, MinHypertree performs faster on larger networks. Regarding the node order for CCH,

all three proposed methods provide significant query speed improvement comparing to the random

ordering. Among these methods, degree centrality gives the best average results for all countries. Even

though the preprocessing time for CCH can take a few minutes, it is outperformed by the fast query

speed. Overall, implementing penalty method to compute AHG with MinHypertree to find OPP will

allow to us to find an OPP with least expected travel time or most reliable travel time within 2 seconds

20

Figure 10: An example of a medium size STDAHG

Figure 11: An example of a large size STDAHG

for largest available road networks.

5 Conclusions and future works

In this study, we formalize a problem of optimal route planning for the stochastic time-dependent

hitchhiker’s problem. We introduced a concept of the stochastic time-dependent hitchhiking graph to

utilize all possible decisions for a hitchhiker and handle multiple uncertainties that are inevitable in

hitchhiking as a transportation mode. We also applied several algorithms to reduce the size of the

graph, heuristics to improve the computational speed and conducted a set of experiments on real-world

21

road networks of selected countries. We performed queries for finding optimal path programs of least

expected travel time or most reliable travel time and showed that their query running time lies within

1−2 seconds even for large road networks, while more than 99% optimality of routes is preserved. This

framework is the basis of the future route recommender app for hitchhikers, which will allow optimal

trip planning for hitchhikers on a country level.

Since this work is the first to tackle route planning for hitchhikers, a variety of future directions is

possible. First, our framework could be extended into a long-distance ridesharing Uber-like application,

where all prearranged rides will automatically change corresponding waiting times to zero and multiple

rides would be allowed. A question of multiple pick-up locations might be considered. In this case,

optimizing the sum of walking time from the initial location and waiting times might be of interest.

More advanced heuristics for optimizing time-dependent hitchhiker’s graphs might include insights from

time-geography concepts, especially introducing time-space prisms to utilize all possible decisions for

a hitchhiker within a certain time budget. A game-theoretical perspective of different hitchhikers and

limited car capacity is another important direction. In this case, the more hitchhikers go to a location,

the larger the waiting time becomes. Other problems of route planning could be considered, as using

different notions of the reliability of path programs based on standard deviation or estimating departure

for the desired arrival time.

6 Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Diva-gis country data, 2017.

[2] Geostat 2011 grid dataset, 2017.

[3] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Alternative routes in road networks.

Journal of Experimental Algorithmics (JEA), 18:1–3, 2013.

[4] R. Bader, J. Dees, R. Geisberger, and P. Sanders. Alternative route graphs in road networks. In

Theory and Practice of Algorithms in (Computer) Systems, pages 21–32. Springer, 2011.

[5] H. Bast, D. Delling, A. Goldberg, M. Mller-Hannemann, T. Pajor, P. Sanders, D. Wagner, and

R. F. Werneck. Route Planning in Transportation Networks. arXiv:1504.05140 [cs], Apr. 2015.

00117 arXiv: 1504.05140.

[6] H. Bast and S. Storandt. Frequency-based Search for Public Transit. In Proceedings of the 22Nd

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,

SIGSPATIAL ’14, pages 13–22, New York, NY, USA, 2014. ACM. 00008.

[7] K. L. Cooke and E. Halsey. The shortest route through a network with time-dependent internodal

transit times. Journal of Mathematical Analysis and Applications, 14(3):493 – 498, 1966.

[8] D. Delling, T. Pajor, D. Wagner, and C. Zaroliagis. Efficient Route Planning in Flight Networks.

In Proceedings of the 9th Workshop on Algorithmic Approaches for Transportation Modeling, Op-

timization, and Systems (ATMOS’09), 2009.

[9] D. Delling and D. Wagner. Time-Dependent Route Planning. In R. K. Ahuja, R. H. Mhring, and

C. D. Zaroliagis, editors, Robust and Online Large-Scale Optimization, number 5868 in Lecture

22

Notes in Computer Science, pages 207–230. Springer Berlin Heidelberg, 2009. DOI: 10.1007/978-

3-642-05465-5 8.

[10] J. Dibbelt, B. Strasser, and D. Wagner. Customizable contraction hierarchies. In International

Symposium on Experimental Algorithms, pages 271–282. Springer, 2014.

[11] S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations research, 17(3):395–412,

1969.

[12] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications. Discrete

Applied Mathematics, 42(2):177–201, Apr. 1993.

[13] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact routing in large road networks using

contraction hierarchies. Transportation Science, 46(3):388–404, 2012.

[14] R. W. Hall. The fastest path through a network with random time-dependent travel times. Trans-

portation science, 20(3):182–188, 1986.

[15] Hitchlog. Hitchhiking logs, 2017. [Accessed June 2017].

[16] HitchWiki. Hitchhiking maps and wiki, 2017. [Accessed June 2017].

[17] W.-S. Jung, F. Wang, and H. E. Stanley. Gravity model in the Korean highway. EPL (Europhysics

Letters), 81(4):48005, Feb. 2008. 00106 arXiv: 0710.1274.

[18] M. Kobitzsch, M. Radermacher, and D. Schieferdecker. Evolution and evaluation of the penalty

method for alternative graphs. In ATMOS-13th Workshop on Algorithmic Approaches for

Transportation Modelling, Optimization, and Systems-2013, volume 33, pages 94–107. Schloss

DagstuhlLeibniz-Zentrum fuer Informatik, 2013.

[19] M. Kobitzsch, S. Samaranayake, and D. Schieferdecker. Pruning techniques for the stochastic

on-time arrival problem\texorpdfstring–an experimental study. arXiv preprint arXiv:1407.8295,

2014.

[20] F. Kotz. The base-rate of hitch-hiking success and its moderators: A meta-analysis. Transportation

Research Part F: Traffic Psychology and Behaviour, 46, Part A:149–160, Apr. 2017. 00000.

[21] C. V. I. T. Ltd. Choice routing, 2009.

[22] E. D. Miller-Hooks and H. S. Mahmassani. Least Expected Time Paths in Stochastic, Time-Varying

Transportation Networks. Transportation Science, 34(2):198–215, 2000.

[23] S. Nguyen and S. Pallottino. Equilibrium traffic assignment for large scale transit networks. Eu-

ropean Journal of Operational Research, 37(2):176 – 186, 1988.

[24] Y. Nie and Y. Fan. Arriving-on-time problem: discrete algorithm that ensures convergence. Trans-

portation Research Record, 1964(1):193–200, 2006.

[25] L. R. Nielsen et al. Route choice in stochastic time-dependent networks. University of Aarhus.

Department of Operations Research, 2004.

[26] A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with time-

dependent edge-length. Journal of the ACM (JACM), 37(3):607–625, 1990.

[27] A. Paraskevopoulos and C. Zaroliagis. Improved alternative route planning. In OASIcs-OpenAccess

Series in Informatics, volume 33. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[28] D. Pretolani. A Directed Hypergraph Model for Random Time Dependent Shortest Paths. European

Journal of Operational Research, 123, 1998.

[29] O. Vedernikov, L. Kulik, and K. Ramamohanarao. The hitchhiker’s guide to the pick-up locations.

Open Geospatial Data, Software and Standards, 1(1):12, Dec. 2016. 00000.

23

[30] O. Vedernikov, L. Kulik, and K. Ramamohanarao. The hitchhiker’s guide to the optimal route plan-

ning. In Proceedings of the 2017 IEEE 18th International Conference on Mobile Data Management,

MDM ’17. IEEE Computer Society, 2017.

[31] J. Y. Yen. Finding the k shortest loopless paths in a network. management Science, 17(11):712–716,

1971.

24

View publication statsView publication stats

https://www.researchgate.net/publication/337215246

